Main Menu

 Home 

 Software 
    - Driver 
    - Graphic & Design 
    - Internet 
    - MacOSX 
    - Multimedia 
    - Office 
    - Portable 
    - Security 
    - System 

 Music 
    - Mp3 
    - Music Video 

 Games 
    - PC 
    - Console 

 Books 
    - Audiobook 
    - Comic 
    - eBook 
    - Magazine 
    - Video Training 

 Movies 
    - Amine 
    - Cam 
    - DVD 
    - HD/BluRay 
    - TV Show 
    - Documentary 

 Graphics 
    - 3D Model 
    - icon 
    - Font 
    - Footage 
    - Photoshop 
    - Template 
    - Vector 
    - Stock 
    - Script/Plugin 
    - Wallpaper 

 Mobile 
    - iOS 
    - Android 
 
 
 
   Books / eBook : Molecular Evolution: A Statistical Approach
Molecular Evolution: A Statistical Approach

Molecular Evolution: A Statistical Approach by Ziheng Yang
English | 2014 | ISBN: 0199602603, 0199602611 | 512 pages | PDF | 6 MB

Studies of evolution at the molecular level have experienced phenomenal growth in the last few decades, due to rapid accumulation of genetic sequence data, improved computer hardware and software, and the development of sophisticated analytical methods. The flood of genomic data has generated an acute need for powerful statistical methods and efficient computational algorithms to enable their effective analysis and interpretation.

Molecular Evolution: a statistical approach presents and explains modern statistical methods and computational algorithms for the comparative analysis of genetic sequence data in the fields of molecular evolution, molecular phylogenetics, statistical phylogeography, and comparative genomics. Written by an expert in the field, the book emphasizes conceptual understanding rather than mathematical proofs. The text is enlivened with numerous examples of real data analysis and numerical calculations to illustrate the theory, in addition to the working problems at the end of each chapter. The coverage of maximum likelihood and Bayesian methods are in particular up-to-date, comprehensive, and authoritative.

This advanced textbook is aimed at graduate level students and professional researchers (both empiricists and theoreticians) in the fields of bioinformatics and computational biology, statistical genomics, evolutionary biology, molecular systematics, and population genetics. It will also be of relevance and use to a wider audience of applied statisticians, mathematicians, and computer scientists working in computational biology.

Buy Premium Account To Get Resumable Support & Max Speed




Links are Interchangeable - No Password
 

 

Back to Top